\(\int \frac {a+b \csc ^{-1}(c x)}{(d+e x^2)^{5/2}} \, dx\) [164]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [F]
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 20, antiderivative size = 296 \[ \int \frac {a+b \csc ^{-1}(c x)}{\left (d+e x^2\right )^{5/2}} \, dx=-\frac {b c e x^2 \sqrt {-1+c^2 x^2}}{3 d^2 \left (c^2 d+e\right ) \sqrt {c^2 x^2} \sqrt {d+e x^2}}+\frac {x \left (a+b \csc ^{-1}(c x)\right )}{3 d \left (d+e x^2\right )^{3/2}}+\frac {2 x \left (a+b \csc ^{-1}(c x)\right )}{3 d^2 \sqrt {d+e x^2}}+\frac {b c^2 x \sqrt {1-c^2 x^2} \sqrt {d+e x^2} E\left (\arcsin (c x)\left |-\frac {e}{c^2 d}\right .\right )}{3 d^2 \left (c^2 d+e\right ) \sqrt {c^2 x^2} \sqrt {-1+c^2 x^2} \sqrt {1+\frac {e x^2}{d}}}+\frac {2 b x \sqrt {1-c^2 x^2} \sqrt {1+\frac {e x^2}{d}} \operatorname {EllipticF}\left (\arcsin (c x),-\frac {e}{c^2 d}\right )}{3 d^2 \sqrt {c^2 x^2} \sqrt {-1+c^2 x^2} \sqrt {d+e x^2}} \]

[Out]

1/3*x*(a+b*arccsc(c*x))/d/(e*x^2+d)^(3/2)+2/3*x*(a+b*arccsc(c*x))/d^2/(e*x^2+d)^(1/2)-1/3*b*c*e*x^2*(c^2*x^2-1
)^(1/2)/d^2/(c^2*d+e)/(c^2*x^2)^(1/2)/(e*x^2+d)^(1/2)+1/3*b*c^2*x*EllipticE(c*x,(-e/c^2/d)^(1/2))*(-c^2*x^2+1)
^(1/2)*(e*x^2+d)^(1/2)/d^2/(c^2*d+e)/(c^2*x^2)^(1/2)/(c^2*x^2-1)^(1/2)/(1+e*x^2/d)^(1/2)+2/3*b*x*EllipticF(c*x
,(-e/c^2/d)^(1/2))*(-c^2*x^2+1)^(1/2)*(1+e*x^2/d)^(1/2)/d^2/(c^2*x^2)^(1/2)/(c^2*x^2-1)^(1/2)/(e*x^2+d)^(1/2)

Rubi [A] (verified)

Time = 0.18 (sec) , antiderivative size = 296, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.550, Rules used = {198, 197, 5337, 12, 541, 538, 438, 437, 435, 432, 430} \[ \int \frac {a+b \csc ^{-1}(c x)}{\left (d+e x^2\right )^{5/2}} \, dx=\frac {2 x \left (a+b \csc ^{-1}(c x)\right )}{3 d^2 \sqrt {d+e x^2}}+\frac {x \left (a+b \csc ^{-1}(c x)\right )}{3 d \left (d+e x^2\right )^{3/2}}+\frac {2 b x \sqrt {1-c^2 x^2} \sqrt {\frac {e x^2}{d}+1} \operatorname {EllipticF}\left (\arcsin (c x),-\frac {e}{c^2 d}\right )}{3 d^2 \sqrt {c^2 x^2} \sqrt {c^2 x^2-1} \sqrt {d+e x^2}}+\frac {b c^2 x \sqrt {1-c^2 x^2} \sqrt {d+e x^2} E\left (\arcsin (c x)\left |-\frac {e}{c^2 d}\right .\right )}{3 d^2 \sqrt {c^2 x^2} \sqrt {c^2 x^2-1} \left (c^2 d+e\right ) \sqrt {\frac {e x^2}{d}+1}}-\frac {b c e x^2 \sqrt {c^2 x^2-1}}{3 d^2 \sqrt {c^2 x^2} \left (c^2 d+e\right ) \sqrt {d+e x^2}} \]

[In]

Int[(a + b*ArcCsc[c*x])/(d + e*x^2)^(5/2),x]

[Out]

-1/3*(b*c*e*x^2*Sqrt[-1 + c^2*x^2])/(d^2*(c^2*d + e)*Sqrt[c^2*x^2]*Sqrt[d + e*x^2]) + (x*(a + b*ArcCsc[c*x]))/
(3*d*(d + e*x^2)^(3/2)) + (2*x*(a + b*ArcCsc[c*x]))/(3*d^2*Sqrt[d + e*x^2]) + (b*c^2*x*Sqrt[1 - c^2*x^2]*Sqrt[
d + e*x^2]*EllipticE[ArcSin[c*x], -(e/(c^2*d))])/(3*d^2*(c^2*d + e)*Sqrt[c^2*x^2]*Sqrt[-1 + c^2*x^2]*Sqrt[1 +
(e*x^2)/d]) + (2*b*x*Sqrt[1 - c^2*x^2]*Sqrt[1 + (e*x^2)/d]*EllipticF[ArcSin[c*x], -(e/(c^2*d))])/(3*d^2*Sqrt[c
^2*x^2]*Sqrt[-1 + c^2*x^2]*Sqrt[d + e*x^2])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 197

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x*((a + b*x^n)^(p + 1)/a), x] /; FreeQ[{a, b, n, p}, x] &
& EqQ[1/n + p + 1, 0]

Rule 198

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-x)*((a + b*x^n)^(p + 1)/(a*n*(p + 1))), x] + Dist[(n*(p
 + 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, n, p}, x] && ILtQ[Simplify[1/n + p +
 1], 0] && NeQ[p, -1]

Rule 430

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]
))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && Gt
Q[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])

Rule 432

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*
x^2], Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + (d/c)*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 437

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[a + b*x^2]/Sqrt[1 + (b/a)*x^2]
, Int[Sqrt[1 + (b/a)*x^2]/Sqrt[c + d*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ
[a, 0]

Rule 438

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*x^2]
, Int[Sqrt[a + b*x^2]/Sqrt[1 + (d/c)*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] &&  !GtQ[c, 0]

Rule 538

Int[((e_) + (f_.)*(x_)^(n_))/(Sqrt[(a_) + (b_.)*(x_)^(n_)]*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/
b, Int[Sqrt[a + b*x^n]/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/(Sqrt[a + b*x^n]*Sqrt[c + d*x^n]),
x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&  !(EqQ[n, 2] && ((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && (PosQ[
d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-b/a, -d/c]))))))

Rule 541

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[(
-(b*e - a*f))*x*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*n*(b*c - a*d)*(p + 1))), x] + Dist[1/(a*n*(b*c - a
*d)*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(b*e - a*f) + e*n*(b*c - a*d)*(p + 1) + d*(b*e - a*
f)*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, q}, x] && LtQ[p, -1]

Rule 5337

Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u = IntHide[(d + e*x^2
)^p, x]}, Dist[a + b*ArcCsc[c*x], u, x] + Dist[b*c*(x/Sqrt[c^2*x^2]), Int[SimplifyIntegrand[u/(x*Sqrt[c^2*x^2
- 1]), x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && (IGtQ[p, 0] || ILtQ[p + 1/2, 0])

Rubi steps \begin{align*} \text {integral}& = \frac {x \left (a+b \csc ^{-1}(c x)\right )}{3 d \left (d+e x^2\right )^{3/2}}+\frac {2 x \left (a+b \csc ^{-1}(c x)\right )}{3 d^2 \sqrt {d+e x^2}}+\frac {(b c x) \int \frac {3 d+2 e x^2}{3 d^2 \sqrt {-1+c^2 x^2} \left (d+e x^2\right )^{3/2}} \, dx}{\sqrt {c^2 x^2}} \\ & = \frac {x \left (a+b \csc ^{-1}(c x)\right )}{3 d \left (d+e x^2\right )^{3/2}}+\frac {2 x \left (a+b \csc ^{-1}(c x)\right )}{3 d^2 \sqrt {d+e x^2}}+\frac {(b c x) \int \frac {3 d+2 e x^2}{\sqrt {-1+c^2 x^2} \left (d+e x^2\right )^{3/2}} \, dx}{3 d^2 \sqrt {c^2 x^2}} \\ & = -\frac {b c e x^2 \sqrt {-1+c^2 x^2}}{3 d^2 \left (c^2 d+e\right ) \sqrt {c^2 x^2} \sqrt {d+e x^2}}+\frac {x \left (a+b \csc ^{-1}(c x)\right )}{3 d \left (d+e x^2\right )^{3/2}}+\frac {2 x \left (a+b \csc ^{-1}(c x)\right )}{3 d^2 \sqrt {d+e x^2}}+\frac {(b c x) \int \frac {d \left (3 c^2 d+2 e\right )+c^2 d e x^2}{\sqrt {-1+c^2 x^2} \sqrt {d+e x^2}} \, dx}{3 d^3 \left (c^2 d+e\right ) \sqrt {c^2 x^2}} \\ & = -\frac {b c e x^2 \sqrt {-1+c^2 x^2}}{3 d^2 \left (c^2 d+e\right ) \sqrt {c^2 x^2} \sqrt {d+e x^2}}+\frac {x \left (a+b \csc ^{-1}(c x)\right )}{3 d \left (d+e x^2\right )^{3/2}}+\frac {2 x \left (a+b \csc ^{-1}(c x)\right )}{3 d^2 \sqrt {d+e x^2}}+\frac {(2 b c x) \int \frac {1}{\sqrt {-1+c^2 x^2} \sqrt {d+e x^2}} \, dx}{3 d^2 \sqrt {c^2 x^2}}+\frac {\left (b c^3 x\right ) \int \frac {\sqrt {d+e x^2}}{\sqrt {-1+c^2 x^2}} \, dx}{3 d^2 \left (c^2 d+e\right ) \sqrt {c^2 x^2}} \\ & = -\frac {b c e x^2 \sqrt {-1+c^2 x^2}}{3 d^2 \left (c^2 d+e\right ) \sqrt {c^2 x^2} \sqrt {d+e x^2}}+\frac {x \left (a+b \csc ^{-1}(c x)\right )}{3 d \left (d+e x^2\right )^{3/2}}+\frac {2 x \left (a+b \csc ^{-1}(c x)\right )}{3 d^2 \sqrt {d+e x^2}}+\frac {\left (b c^3 x \sqrt {1-c^2 x^2}\right ) \int \frac {\sqrt {d+e x^2}}{\sqrt {1-c^2 x^2}} \, dx}{3 d^2 \left (c^2 d+e\right ) \sqrt {c^2 x^2} \sqrt {-1+c^2 x^2}}+\frac {\left (2 b c x \sqrt {1+\frac {e x^2}{d}}\right ) \int \frac {1}{\sqrt {-1+c^2 x^2} \sqrt {1+\frac {e x^2}{d}}} \, dx}{3 d^2 \sqrt {c^2 x^2} \sqrt {d+e x^2}} \\ & = -\frac {b c e x^2 \sqrt {-1+c^2 x^2}}{3 d^2 \left (c^2 d+e\right ) \sqrt {c^2 x^2} \sqrt {d+e x^2}}+\frac {x \left (a+b \csc ^{-1}(c x)\right )}{3 d \left (d+e x^2\right )^{3/2}}+\frac {2 x \left (a+b \csc ^{-1}(c x)\right )}{3 d^2 \sqrt {d+e x^2}}+\frac {\left (b c^3 x \sqrt {1-c^2 x^2} \sqrt {d+e x^2}\right ) \int \frac {\sqrt {1+\frac {e x^2}{d}}}{\sqrt {1-c^2 x^2}} \, dx}{3 d^2 \left (c^2 d+e\right ) \sqrt {c^2 x^2} \sqrt {-1+c^2 x^2} \sqrt {1+\frac {e x^2}{d}}}+\frac {\left (2 b c x \sqrt {1-c^2 x^2} \sqrt {1+\frac {e x^2}{d}}\right ) \int \frac {1}{\sqrt {1-c^2 x^2} \sqrt {1+\frac {e x^2}{d}}} \, dx}{3 d^2 \sqrt {c^2 x^2} \sqrt {-1+c^2 x^2} \sqrt {d+e x^2}} \\ & = -\frac {b c e x^2 \sqrt {-1+c^2 x^2}}{3 d^2 \left (c^2 d+e\right ) \sqrt {c^2 x^2} \sqrt {d+e x^2}}+\frac {x \left (a+b \csc ^{-1}(c x)\right )}{3 d \left (d+e x^2\right )^{3/2}}+\frac {2 x \left (a+b \csc ^{-1}(c x)\right )}{3 d^2 \sqrt {d+e x^2}}+\frac {b c^2 x \sqrt {1-c^2 x^2} \sqrt {d+e x^2} E\left (\arcsin (c x)\left |-\frac {e}{c^2 d}\right .\right )}{3 d^2 \left (c^2 d+e\right ) \sqrt {c^2 x^2} \sqrt {-1+c^2 x^2} \sqrt {1+\frac {e x^2}{d}}}+\frac {2 b x \sqrt {1-c^2 x^2} \sqrt {1+\frac {e x^2}{d}} \operatorname {EllipticF}\left (\arcsin (c x),-\frac {e}{c^2 d}\right )}{3 d^2 \sqrt {c^2 x^2} \sqrt {-1+c^2 x^2} \sqrt {d+e x^2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.42 (sec) , antiderivative size = 249, normalized size of antiderivative = 0.84 \[ \int \frac {a+b \csc ^{-1}(c x)}{\left (d+e x^2\right )^{5/2}} \, dx=\frac {x \left (-b c e \sqrt {1-\frac {1}{c^2 x^2}} x \left (d+e x^2\right )+a \left (c^2 d+e\right ) \left (3 d+2 e x^2\right )+b \left (c^2 d+e\right ) \left (3 d+2 e x^2\right ) \csc ^{-1}(c x)\right )}{3 d^2 \left (c^2 d+e\right ) \left (d+e x^2\right )^{3/2}}+\frac {i b c \sqrt {1-\frac {1}{c^2 x^2}} x \sqrt {1+\frac {e x^2}{d}} \left (c^2 d E\left (i \text {arcsinh}\left (\sqrt {-c^2} x\right )|-\frac {e}{c^2 d}\right )+2 \left (c^2 d+e\right ) \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {-c^2} x\right ),-\frac {e}{c^2 d}\right )\right )}{3 \sqrt {-c^2} d^2 \left (c^2 d+e\right ) \sqrt {1-c^2 x^2} \sqrt {d+e x^2}} \]

[In]

Integrate[(a + b*ArcCsc[c*x])/(d + e*x^2)^(5/2),x]

[Out]

(x*(-(b*c*e*Sqrt[1 - 1/(c^2*x^2)]*x*(d + e*x^2)) + a*(c^2*d + e)*(3*d + 2*e*x^2) + b*(c^2*d + e)*(3*d + 2*e*x^
2)*ArcCsc[c*x]))/(3*d^2*(c^2*d + e)*(d + e*x^2)^(3/2)) + ((I/3)*b*c*Sqrt[1 - 1/(c^2*x^2)]*x*Sqrt[1 + (e*x^2)/d
]*(c^2*d*EllipticE[I*ArcSinh[Sqrt[-c^2]*x], -(e/(c^2*d))] + 2*(c^2*d + e)*EllipticF[I*ArcSinh[Sqrt[-c^2]*x], -
(e/(c^2*d))]))/(Sqrt[-c^2]*d^2*(c^2*d + e)*Sqrt[1 - c^2*x^2]*Sqrt[d + e*x^2])

Maple [F]

\[\int \frac {a +b \,\operatorname {arccsc}\left (c x \right )}{\left (e \,x^{2}+d \right )^{\frac {5}{2}}}d x\]

[In]

int((a+b*arccsc(c*x))/(e*x^2+d)^(5/2),x)

[Out]

int((a+b*arccsc(c*x))/(e*x^2+d)^(5/2),x)

Fricas [A] (verification not implemented)

none

Time = 0.12 (sec) , antiderivative size = 350, normalized size of antiderivative = 1.18 \[ \int \frac {a+b \csc ^{-1}(c x)}{\left (d+e x^2\right )^{5/2}} \, dx=\frac {{\left (2 \, {\left (a c^{3} d^{2} e + a c d e^{2}\right )} x^{3} + 3 \, {\left (a c^{3} d^{3} + a c d^{2} e\right )} x + {\left (2 \, {\left (b c^{3} d^{2} e + b c d e^{2}\right )} x^{3} + 3 \, {\left (b c^{3} d^{3} + b c d^{2} e\right )} x\right )} \operatorname {arccsc}\left (c x\right ) - {\left (b c d e^{2} x^{3} + b c d^{2} e x\right )} \sqrt {c^{2} x^{2} - 1}\right )} \sqrt {e x^{2} + d} - {\left ({\left (b c^{4} d e^{2} x^{4} + 2 \, b c^{4} d^{2} e x^{2} + b c^{4} d^{3}\right )} E(\arcsin \left (c x\right )\,|\,-\frac {e}{c^{2} d}) - {\left ({\left ({\left (b c^{4} - 3 \, b c^{2}\right )} d e^{2} - 2 \, b e^{3}\right )} x^{4} + {\left (b c^{4} - 3 \, b c^{2}\right )} d^{3} - 2 \, b d^{2} e + 2 \, {\left ({\left (b c^{4} - 3 \, b c^{2}\right )} d^{2} e - 2 \, b d e^{2}\right )} x^{2}\right )} F(\arcsin \left (c x\right )\,|\,-\frac {e}{c^{2} d})\right )} \sqrt {-d}}{3 \, {\left (c^{3} d^{6} + c d^{5} e + {\left (c^{3} d^{4} e^{2} + c d^{3} e^{3}\right )} x^{4} + 2 \, {\left (c^{3} d^{5} e + c d^{4} e^{2}\right )} x^{2}\right )}} \]

[In]

integrate((a+b*arccsc(c*x))/(e*x^2+d)^(5/2),x, algorithm="fricas")

[Out]

1/3*((2*(a*c^3*d^2*e + a*c*d*e^2)*x^3 + 3*(a*c^3*d^3 + a*c*d^2*e)*x + (2*(b*c^3*d^2*e + b*c*d*e^2)*x^3 + 3*(b*
c^3*d^3 + b*c*d^2*e)*x)*arccsc(c*x) - (b*c*d*e^2*x^3 + b*c*d^2*e*x)*sqrt(c^2*x^2 - 1))*sqrt(e*x^2 + d) - ((b*c
^4*d*e^2*x^4 + 2*b*c^4*d^2*e*x^2 + b*c^4*d^3)*elliptic_e(arcsin(c*x), -e/(c^2*d)) - (((b*c^4 - 3*b*c^2)*d*e^2
- 2*b*e^3)*x^4 + (b*c^4 - 3*b*c^2)*d^3 - 2*b*d^2*e + 2*((b*c^4 - 3*b*c^2)*d^2*e - 2*b*d*e^2)*x^2)*elliptic_f(a
rcsin(c*x), -e/(c^2*d)))*sqrt(-d))/(c^3*d^6 + c*d^5*e + (c^3*d^4*e^2 + c*d^3*e^3)*x^4 + 2*(c^3*d^5*e + c*d^4*e
^2)*x^2)

Sympy [F(-1)]

Timed out. \[ \int \frac {a+b \csc ^{-1}(c x)}{\left (d+e x^2\right )^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate((a+b*acsc(c*x))/(e*x**2+d)**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {a+b \csc ^{-1}(c x)}{\left (d+e x^2\right )^{5/2}} \, dx=\int { \frac {b \operatorname {arccsc}\left (c x\right ) + a}{{\left (e x^{2} + d\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate((a+b*arccsc(c*x))/(e*x^2+d)^(5/2),x, algorithm="maxima")

[Out]

1/3*a*(2*x/(sqrt(e*x^2 + d)*d^2) + x/((e*x^2 + d)^(3/2)*d)) + b*integrate(arctan2(1, sqrt(c*x + 1)*sqrt(c*x -
1))/((e^2*x^4 + 2*d*e*x^2 + d^2)*sqrt(e*x^2 + d)), x)

Giac [F]

\[ \int \frac {a+b \csc ^{-1}(c x)}{\left (d+e x^2\right )^{5/2}} \, dx=\int { \frac {b \operatorname {arccsc}\left (c x\right ) + a}{{\left (e x^{2} + d\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate((a+b*arccsc(c*x))/(e*x^2+d)^(5/2),x, algorithm="giac")

[Out]

integrate((b*arccsc(c*x) + a)/(e*x^2 + d)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \csc ^{-1}(c x)}{\left (d+e x^2\right )^{5/2}} \, dx=\int \frac {a+b\,\mathrm {asin}\left (\frac {1}{c\,x}\right )}{{\left (e\,x^2+d\right )}^{5/2}} \,d x \]

[In]

int((a + b*asin(1/(c*x)))/(d + e*x^2)^(5/2),x)

[Out]

int((a + b*asin(1/(c*x)))/(d + e*x^2)^(5/2), x)